是极其潦草的学习笔记 w

# Python 篇

# package 的准备

  1. pandas
  2. statsmodels
  3. openpyxl

# 读取文件

  1. 要指定好文件的路径
  2. 最好使用 names=['x','y'] 来指定说明变量目标变量
import pandas as pd
file_pass = r"D:\python\data.xlsx"
df = pd.read_excel(file_pass, header=0, names=['cost', 'sales'])
import statsmodels.formula.api as smf
model = smf.ols('sales ~ cost', data=df)
result = model.fit()
print(result.summary())

输出结果为:

OLS Regression Results                            
==============================================================================
Dep. Variable:                  sales   R-squared:                       1.000
Model:                            OLS   Adj. R-squared:                  1.000
Method:                 Least Squares   F-statistic:                 1.981e+31
Date:                Tue, 02 May 2023   Prob (F-statistic):           2.50e-47
Time:                        14:12:47   Log-Likelihood:                 153.61
No. Observations:                   5   AIC:                            -303.2
Df Residuals:                       3   BIC:                            -304.0
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept     10.0000   1.49e-14   6.71e+14      0.000      10.000      10.000
cost           2.0000   4.49e-16   4.45e+15      0.000       2.000       2.000
==============================================================================
Omnibus:                          nan   Durbin-Watson:                   0.667
Prob(Omnibus):                    nan   Jarque-Bera (JB):                0.375
Skew:                          -0.344   Prob(JB):                        0.829
Kurtosis:                       1.847   Cond. No.                         77.8
==============================================================================

# Stata 篇

# 简单使用 Stata

  1. Log in
  2. import data
  3. save as
  4. use data
use D:\python\data_回归分析.dta
regress 売上高万円 広告費

** 注意:** 使用的数据文件一定是.dta 格式,<u> 而这个必须要先导入数据后保存再得到。</u>

输出:

-------------+----------------------------------   F(1, 3)         =         .
       Model |        4000         1        4000   Prob > F        =         .
    Residual |           0         3           0   R-squared       =    1.0000
-------------+----------------------------------   Adj R-squared   =    1.0000
       Total |        4000         4        1000   Root MSE        =         0

------------------------------------------------------------------------------
  売上高万円 | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
      広告費 |          2          .        .       .            .           .
       _cons |         10          .        .       .            .           .
------------------------------------------------------------------------------

# 附录

costsales
1030
2050
3070
4090
50110